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Abstract
The inelastic x-ray scattering technique using the brilliant x-ray beams from
synchrotron radiation sources is perfectly well suited for the determination of
the dispersion curves of phonon modes in condensed matter. In this contribution
some experimental details of the method are discussed. The strengths are
demonstrated with several recent results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the early days of x-ray scattering in condensed matter physics the diffraction spots delivered
information on the static order of the atoms in the material investigated. Attempts were soon
made to analyse the diffuse scattering intensities visible between the diffraction spots. It was
expected that the thermal movements of the atoms would contribute to these intensities which,
for this reason, contain information on the lattice dynamics.

One of the first experiments was performed by Walker (1956), with measurements of the
diffuse scattering intensity along high-symmetry directions from fcc aluminium (figure 1(a))
in reciprocal space. From these data the phonon dispersion curves shown in figure 1(b) were
derived using a model of elastic waves describing the motions of the atoms, according to the
lattice dynamics theory of Born (1942).

Recently, the thermal diffuse scattering intensity of a thin Si wafer (0.5 mm) was recorded
in transmission Laue geometry using the high photon flux of an undulator beam at the Advanced
Photon Source (APS) in Chicago by Holt et al (1999). Figure 2 shows the intensity distributions
detected by an image plate for Si(111) in (a) and for Si(100) in (b). Figures 2(c) and 2(d) are
best fits to the x-ray intensity pattern obtained by model calculations of the lattice dynamics,
in agreement with neutron data from the literature.

However, nowadays it is possible to measure dispersion curves directly by the detection of
energy shifts of the photons occurring in the inelastic scattering process due to the creation and
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Figure 1. (a) Diffuse x-ray scattering intensities for fcc Al along the [h00] direction and (b) the
derived phonon dispersion curves for fcc Al, after Walker (1956).

Figure 2. Transmission x-ray scattering images taken from (a) Si(111) and (b) Si(100). In each
case the shadow of a beam stop is visible. (c) and (d) show calculated images for these orientations
(Holt et al 1999).

annihilation of vibrational quanta (Burkel et al 1986, 1987a, b, 1989, 1991, Dorner et al 1987,
Burkel 1989, 1991, 2000). There is no need for model calculations to obtain the dispersion
relations as is familiar from neutron scattering (Brockhouse 1961, Bacon 1962).
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2. Scattering cross section

A general scattering experiment is shown schematically in figure 3. This arrangement is valid
for all probes such as neutrons, electron beams and electromagnetic radiation. The incident
beam of well defined wavevector ki, energy Ei and polarization unit vector ei is scattered into
the solid-angle element d� under the scattering angle 2θ . The scattered beam is completely
defined by the new wavevector kf , the energy Ef and the polarization unit vector ef .

Figure 3. Scattering geometry.

The scattered intensity is described by the double-differential cross section d2σ/(d� dωf).
It is given by the rate of removal of particles from the incident beam as the result of being
scattered into a solid angle d� within a frequency range of dωf .

The scattered beam is usually distributed over a range of energies Ef . There can be
contributions of the beam that have been scattered elastically with no change of energy or other
contributions that have changed energy due to inelastic scattering. Therefore, the scattering
process contains information on energy and momentum transfers from

E = h̄ω ≡ Ei − Ef h̄Q ≡ h̄(ki − kf). (1)

The discussion will now concentrate on the scattering of x-rays where the transferred
energy is normally smaller than the photon energy (E � Ei). In this case the momentum
transfer h̄Q is simply connected with the scattering angle θ by

h̄Q = 2h̄ki sin θ. (2)

For further discussion of the double-differential scattering cross section the representation

d2σ

d� dωf
=

(
dσ

d�

)
0

S(Q, ω) (3)

derived by Van Hove (1954), will be used. This description has the advantage of allowing
separation of the double-differential cross section into two contributions. The coupling of the
beam to the scattering system is characterized by the intrinsic cross section (dσ/d�)0, and the
properties of the sample in the absence of the perturbing probe are expressed by the scattering
function S(Q, ω).

This treatment in the lowest-order Born approximation (first-order perturbation theory) is
allowed, since the coupling of the electromagnetic field of the photon beam to the scattering
electron system of the sample, given by the Thomson scattering cross section(

dσ

d�

)
0

=
(

dσ

d�

)
Th

= r2
0 (ei · ef)

2

(
ωf

ωi

)
(4)

of a single electron, is weak. r0 = e2/mc2 = 2.818×10−13 cm is the classical electron radius.
Therefore, (dσ/d�)Th is of the order of 10−25 cm2. Since E � Ei, the factor ωf/ωi in (4) is
about equal to 1 in the case of non-resonant x-ray scattering.
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The scattering function can be discussed in different modifications. A sophisticated
representation of the scattering function was derived by Van Hove (1954):

S(Q, ω) = 1

2π

∫
dt e−iωt〈ϒi|

∑
j,j ′

e−iQ·rj (t)eiQ·rj ′ (0)|ϒi〉. (5)

It describes the correlations of the scattering phases of the particles at positions r(0) with those
at rj (t) at different times t . In the classical limit it represents essentially the Fourier transform
in time of the density correlation function and gives information on the particle fluctuations in
the scattering system in the same states ϒi at different times.

3. Phonon dispersion curves

3.1. Experimental determination

Inelastic scattering of x-rays from phonons is expected to supply similar information about the
dynamics of the observed system to coherent inelastic neutron scattering. This is supported by
the experiments of Joynson (1954) and Walker (1956), as discussed above. Within the limits of
the adiabatic approximation, the electrons are expected to follow the movements of the nuclei
instantaneously. This is reasonable since the vibrational motion of the atoms is orders of
magnitude slower than typical electronic timescales. Therefore, phonons, i.e. low-frequency
vibrations of the nuclei, will cause electron charge-density variations, which can be directly
observed by inelastic x-ray scattering.

The scattering function (5) for one-phonon scattering can be written as

S(Q, ω) = G(Q, q, j)F (ω, T , q, j). (6)

The dynamical structure factor G(Q, q, j) is given by

G(Q, q, j) =
∣∣∣∣∣
unit cell∑

d

fd(Q)e−Wd [Q · ed(q, j)]M
−1/2
d eiQ·d

∣∣∣∣∣
2

. (7)

fd(Q) is the atomic form factor of atom d at position d with fd(Q → 0) = Z. Z is the atomic
number. ed(q, j) is the component of the normalized phonon eigenvector in the mode j with
phonon wavevector q for atom d . e−Wd is the Debye–Waller factor of atom d and Md is its
mass. The function F(ω, T , q, j) for undamped phonons is given by

F(ω, T , q, j) = 〈n〉 + 1/2 ± 1/2

ωq,j

δ(ω ∓ ωq,j ). (8)

Here the upper sign holds for energy loss and the lower one for energy gain by the x-rays. 〈n〉
is the Bose occupation factor and ωq,j the frequency of phonon mode j with wavevector q.

The scattering law for neutrons can be obtained from the scattering law for x-rays by
simply replacing the atomic form factor by the Fermi scattering length.

Detailed discussions of the theory of phonons are given by Peierls (1955), Cochran and
Cowley (1967), Horton and Maradudin (1974) and Brüsch (1982, 1986, 1987). The phonon
eigenvectors e(q, j) describe the directions of the atomic vibrations in the unit cell of the
crystal. In the main symmetry axes of crystals, two different types of vibrational mode exist (see
figures 4(a), 4(b)), namely a longitudinal mode which is connected with atomic displacements
parallel to the direction of the wavevector (e ‖ q), and a transverse wave which is connected
with atomic displacements perpendicular to the direction of the wavevector (e ⊥ q). Therefore,
the eigenvectors are also called polarization vectors. In general directions the vibrational modes
are mixed.

Q = ki − kf = τ + q (9)
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Figure 4. Atomic vibrations in the main symmetry direction of a crystal with longitudinal (a)
and transverse (b) polarization in real space. Scattering geometry in reciprocal space for the
measurement of a longitudinal (c) and transverse phonons (d) in the [100] direction.

where q is the phonon wavevector, defined with respect to the nearest reciprocal-lattice point
τ . The directions of the polarization vector e(q) and the scattering vector Q select the type of
vibrational mode to be detected, according to (7). An energy scan, called a constant-Q scan
(see figure 5), with such a scattering vector will show two signals, due to the creation and the
annihilation of a phonon.

q

E

constant Q

constant E

Figure 5. Phonon dispersion modes together with constant-Q and
constant-E scan lines: schematic diagram.

The scattering geometry for detecting phonons in crystals is illustrated in figures 4(c),
4(d). It shows the positions of the scattering vectors in the reciprocal-space ((hk0) plane) for
the detection of longitudinal (figure 4(a)) and transverse (figure 4(b)) phonons in the [100]
direction.

Certainly, the experimental scans for resolving phonon excitations can also be performed
with constant energy and varying momentum transfers in constant-E scans (see figure 5).

The successful performance of a scattering experiment requires the knowledge of the
resolution volume in energy and momentum space of a three-axis spectrometer. The detailed
discussion of the resolution function by Dorner (1972) for the neutron case function also applies
to x-rays.

Figure 6 shows the distribution of the wavevectors of the photons in an inelastic scattering
process within the scattering plane of the reciprocal space. The sizes of the areas around the
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Figure 6. The distribution of photons in reciprocal space around the
mean wavevectors ki and kf .

mean wavevectors ki and kf depend essentially on the beam divergences, which are controlled
by the sizes of the slits and by the illuminated areas on the monochromator and analyser. The
folding of both contributions in all three dimensions leads, together with the energy resolution,
to the complete resolution function R(Q, ω).

It is known from neutron scattering (Cooper and Nathans 1967) that the resolution
volume described by the function R(Q, ω) has a certain inclination in the (Q, ω) space.
It is defined by the scattering angles of monochromator, sample and analyser of the three-
axis spectrometer. Figure 7 shows the projections of this resolution volume for different
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Figure 7. Different scattering geometries of a three-axis spectrometer with the corresponding
projections of the resolution volume on the scattering plane and on its perpendicular plane. M is
the monochromator, S the sample, A the analyser and D the detector.
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spectrometer configurations. But for the case of a three-axis spectrometer in backscattering
geometry (Alefeld et al 1968, Heidemann 1970), an inclination-free resolution volume
R(Q, ω) is achieved by using Bragg angles of 90◦ at the monochromator and analyser. This
holds also for x-ray spectrometers working close to backscattering.

Figure 8 shows phonon dispersion curves in an arbitrary Brillouin zone and illustrates
constant-Q scans for the standard neutron case and for x-rays with phonons to be observed
at a certain phonon wavevector q. Besides the different inclination, the size of the resolution
volume varies for neutrons and is constant for x-rays. This is due to the strong variation of the
wavevector kf with energy transfer for neutrons. Therefore, the resolution volume has to be
optimized experimentally for the corresponding energy and dispersion of the mode.

In an x-ray experiment the magnitude of the energy transfer has no influence on the
resolution function.

Figure 8. The behaviour of the resolution volume in constant-Q scans for the measurement of a
phonon dispersion branch with neutrons and x-rays shown in an arbitrary Brillouin zone.

3.2. Phonons in single crystals

3.2.1. Phonons in beryllium. Apart from diamond (Burkel et al 1986, Dorner et al 1987),
beryllium was the first crystal which was used to demonstrate the capabilities of inelastic x-ray
scattering.

The longitudinal (L) modes of beryllium in the [00ξ ] direction are particularly suited for
investigations in Brillouin zones of (00l) type. The structure factor is either zero or 4f 2(Q)Q2,
depending on l and on whether the mode is acoustic or optical. This is due to the fact that Bragg
intensities at (00l) in an hcp structure with two atoms per primitive unit cell are extinguished
for odd l and are proportional to 4f 2(Q) for even l. Therefore, the longitudinal acoustic (LA)
modes can only be observed in zones with even l and the longitudinal optical (LO) modes in
zones with odd l. In an extended zone scheme, the longitudinal modes present a continuous
dispersion curve from one $ point to the next $ point.

Figure 9 shows energy scans for different scattering vectors Q with elastic and inelastic
scattering intensities. The inelastic part clearly shows the longitudinal phonon excitation with
its dispersion in Q.

The complete dispersion curves of the longitudinal and transverse modes along the [00ξ ]
direction are shown in figure 10. The agreement of the x-ray data with the neutron data (dotted
line) from Stedman et al (1976) shows that the two methods, x-ray and neutron scattering, lead
to the same frequencies of the phonons. Therefore, the validity of the adiabatic approximation
is a good assumption.

3.2.2. Phonons in α-SiO2. For the demonstration of the strength and reliability of the new
technique of inelastic x-ray scattering the phonon dynamics in single-crystalline α-quartz is
well suited. It has hexagonal structure and its unit cell contains three SiO2 units leading to
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contributions from longitudinal phonons and elastic scattering.
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along the [00ξ ] direction as obtained with x-ray scattering by Sinn et al (2001) together with neutron
data from the literature (Stedman et al 1976).
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27 phonon branches along general crystal directions. However, along the $–K–M direction
[ζ, 0, 0] selection rules reduce these to only 13 visible branches. The investigations were done
along this direction (Halcoussis et al 1996, Halcoussis 1997, Burkel et al 1998, 1999).

Figure 11 gives the x-ray intensity scattered from α-SiO2 at Q = (1.15 0 0) as a function
of the energy transfer. It shows very strong signals from the longitudinal mode and from
several higher-energy modes. The different modes were fitted with Lorentzian lines.

Figure 11. An energy scan at Q = (1.15 0 0) for α-SiO2. The solid line is a fit and the inset shows
the whole spectrum. The solid line is a fit and the dashed line represents the background. From
Halcoussis (1997).

In figure 11, there are modes up to energies of 150 meV clearly visible above the back-
ground. This is a particular strength of the inelastic scattering technique using synchrotron
radiation. It is possible to scan from zero energy transfer up to values well above 100 meV
without changing the scattering geometry and even include energy-gain and energy-loss
signals. Although the intensities of the modes decrease with higher energies, according to
(8), they are visible with x-rays.

Figure 12 shows the energy values of the longitudinal modes obtained along the [ζ, 0, 0]
direction of α-SiO2 in very good agreement with the theoretical dispersion branches according
to the shell model of Schober and Strauch (1993).

For the description of the lattice dynamics of a crystal, various theoretical approaches can
be taken and the results compared with the experimental data. In general, the energies of the
phonons are compared and optimized by variations of the model parameters.

However, inelastic scattering experiments with x-rays give access not only to the energies
of the different modes but also to their intensities. This is simplified by the fact that the phonon
signals have the same widths since the instrumental resolution function stays the same during
the whole energy scan. Therefore, energy eigenvalues and eigenvectors of the modes are
easily accessible. Figure 13 shows the dynamical structure factor (G(Q, q); see (7)) for the
longitudinal acoustic mode along [ζ, 0, 0] for x-rays and neutrons calculated by Halcoussis
(1997). The eigenvectors were taken from the shell model by Schober and Strauch (1993)
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Figure 12. Phonon dispersion curves of α-SiO2 along $KM together with results according to a
shell model (Schober and Strauch 1993). From Halcoussis (1997).

which was optimized by using only energy values obtained in the neutron experiments.
The high sensitivity of inelastic x-ray scattering opens up the possibility of studying

the behaviour of the eigenvectors in more detail. The eigenvectors ed(q, j) are complex,
describing the modulus and the phase of the phonon. This means that for a certain polarization,
the imaginary part can lead to a phase shift of the scattering atoms. Thus, the constructive
interference in the long-wavelength limit (q → 0), where all atoms are in phase, can change
to destructive interference with increasing q. For instance, the atoms can be out of phase
already in the acoustic mode and vibrate in antiphase, similarly to in an optical mode. Since
the momentum transfer q is changing its sign at a lattice point, the effect may be different
for momentum transfers Q smaller or larger than a certain lattice vector. Such effects are
visible in figure 13 as strong asymmetries in the intensities around the lattice vectors (1, 0, 0),
(2, 0, 0) and (3, 0, 0) in a very pronounced way. Halcoussis (1997) confirmed this behaviour
experimentally around (1, 0, 0).

In addition to these experiments some neutron inelastic measurements were performed
using the triple-axis spectrometer IN3 at the high-flux reactor at the Institut Laue–Langevin
(ILL) at Grenoble. Therefore, the experiments on α-SiO2 allow a direct comparison between
inelastic scattering with x-rays and neutrons (table 1).

It is remarkable that despite the difference of six orders of magnitude in the scattering
volume, phonon spectra with similar statistics can be obtained in equal times. The reported
results on α-SiO2 obtained with inelastic x-ray scattering were gained on a sample of only
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Figure 13. The structure factor (G(Q, q) of α-SiO2 for the longitudinal acoustic mode along
[ζ, 0, 0] for x-rays (broken line) and neutrons (full line) calculated by Halcoussis (1997).

Table 1. Comparison of x-ray and neutron scattering. The data are taken from Halcoussis (1997).

Neutrons Photons

Flux at sample position 107 cm−2 s−1 1010 mm−2 s−1

Scattering volume 6 × 104 mm3 5 × 10−2 mm3

Count rate for a typical 215 min−1 117 min−1

LA phonon at maximum
time for a scan range 60 min 65 min
of 10 meV transfer

5 × 10−2 mm3 scattering volume.
Due to this sensitivity of the x-ray method to the intensities of the phonons, considerable

knowledge can be gained about the eigenvectors and, thus, improvements in the modelling
techniques of lattice dynamics are expected.

3.2.3. Phonons in He. Solid and liquid helium are ideal systems for the study of the influence
of quantum effects in condensed matter. In particular, the dynamics of these quantum systems
is a subject of continuous interest. In the case of solid helium, the mass-dependent zero-point
vibrations are very important for the dynamics of both isotopes. Therefore, the comparison of
the phonon spectra and the dispersion curves for the two isotopes, 3He and 4He, is essential
to test the theoretical description of these highly anharmonic systems. However, inelastic
neutron scattering—the common method for studying the dynamics in solids—could only
deliver results on solid 4He. Due to the very high absorption cross section for unpolarized
thermal neutrons, solid 3He was not yet accessible. This restriction does not apply for inelastic
x-ray scattering.

The experiments (Burkel et al 1995, Schell et al 1996, Seyfert et al 1996, Seyfert 1998,
Seyfert et al 1999, Burkel et al 1999) were performed on single crystals in the hcp phase for
both isotopes at a density of 13.25 cm3 mol−1. Due to the high zero-point energy, helium
can only be solidified under pressure even at the lowest temperatures. Therefore, the crystals
were grown in situ in a polycrystalline Be cell of 1.2 mm inner diameter (Venkataraman and
Simmons 1996) within a closed-cycle refrigerator. The Be cell was pressurized through a
steel capillary from the external pressure-generating system. At constant pressures of 70 and
90 MPa, the cell was cooled down below the freezing temperature of helium. The crystals
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were characterized and oriented using their Bragg reflections.
Longitudinal phonons were detected in crystals of both isotopes at momentum transfers

from 6 to 23.5 nm−1. Some spectra along the c-axis are shown in figure 14 (top) for hcp 3He
and for hcp 4He (bottom). Beyond the elastic scattering intensity of the Be cell at energy
transfer ω = 0 the contributions of the helium phonons are clearly visible and their dispersion
obvious. The lineshapes can be very well described within the model of a damped harmonic
oscillator (Fak and Dorner 1992).
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Figure 14. Inelastic x-ray spectra of hcp 3He and 4He for different momentum transfers along the
[001] direction. The data were taken with energy resolutions of 5.9 meV and 8.6 meV, respectively.
Solid lines are fits to the data (Seyfert 1998).

Figure 15 shows the longitudinal dispersion relations for phonons along the [001] direction
in hcp crystals of both isotopes. The dispersion curves are similar but the phonon frequencies
in 3He are about 11(5)% higher than in 4He. This value is smaller than the ratio expected in
a classical harmonic crystal, i.e., from the square root of the inverse masses,

√
4/3 = 1.154.

Thermodynamic measurements (Ahlers 1970) and Raman spectroscopy (Slusher and Surko
1976) delivered even higher values of 1.18 and 1.17, respectively. These differences could be
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an indication of a mode-dependent frequency ratio.
In addition to the phonon frequencies it was also possible to determine the linewidths.

Figure 16 gives the deconvoluted intrinsic widths of the excitations along the [001] direction for
both helium isotopes as functions of the momentum transfer. The absolute values of the widths
and their variations with the momentum transfer are similar within the experimental error bars.
There is no significant broadening at low momentum transfers. At moderate momentum
transfers, however, there is considerable broadening observed. This behaviour is attributed to
unresolved multi-phonon contributions. These contributions can also be responsible for the
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observed asymmetry of the phonon dispersion around the lattice point A in figure 15.
The comparison of the results with theoretical approaches reveals that hcp helium is not

yet described in a satisfactory way. The observed phonon frequencies in hcp 3He are about
20–30% lower than predicted in the only available calculation (Morley and Kliewer 1969).
The frequencies of hcp 4He are reproduced to about 10–15% of a calculation (Gillis et al
1968). Besides, there is a noticeable discrepancy between the experiment and these models as
regards the dependence of the phonon frequencies. Moreover, no theoretical study of phonon
lineshapes in hcp helium has been published yet.

3.2.4. Phonons in large-band-gap materials. Large band-gap III–V nitride semiconductors
are materials suited for applications in high-temperature electronics and for optical applications
at short wavelengths, since they show high-temperature stability.

Experiments on a AlN single crystal, only available in the wurtzite phase, with the
approximate dimensions (0.5 × 0.5 × 0.5) mm3 by Schwoerer-Böhning et al (1999) led to the
dispersion curves of longitudinal and transverse phonons shown in figure 17. First-principles
calculations performed by the authors are given as solid lines in the figure. The calculated
density of states is shown as well. There is an excellent agreement between the data and the
calculations. For further details see Schwoerer-Böhning et al (1999).
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Figure 17. Longitudinal acoustic and optical phonon dispersions of wurtzite AlN together with
the results from ab initio calculations from Schwoerer-Böhning et al (1999).

3.3. Phonons in polycrystals

Polycrystals contain a variety of randomly oriented single crystallites. There is no distinct
orientational direction as in single crystals and, therefore, the direction of the momentum
transfer h̄Q relative to the crystal orientation is not defined. Because of the averaging over
the orientation only the absolute value, |Q| = Q, is defined. This means that the scattering
process takes place on a spherical shell in the reciprocal space and not on a point, as in the case
of single crystals. In an elastic scattering process the shells are observed as Debye–Scherrer
rings. This is illustrated in figure 18, contrasting with figure 4. There can be fine structure of
the rings, depending on the grain size of the crystallites and on the resolution volume.

The attempt to measure phonons (Burkel et al 1990, Burkel 1991) with a certain
momentum transfer can lead to contributions from a variety of phonon modes depending
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(a) (b)

Figure 18. The scattering geometry in a polycrystal for the observation of phonons for momentum
transfer Q in the reciprocal space within the first Brillouin zone (a) and beyond (b).

on the value of Q and on the solid angle d� (figure 6). In order to obtain a dispersion relation
of a material, one needs a distinct correlation of the wavevector q with its frequency ω. In
a polycrystalline material this is only possible in the first Brillouin zone with the reciprocal-
lattice vector τ equal to 0, which leads to the fact that the momentum transfer h̄Q equals h̄q.
This shows that only longitudinal (compression) phonon modes are measured within the first
Brillouin zone (figure 18(a)). Any momentum transfer beyond the first Brillouin zone will
excite several longitudinal and transverse phonon modes simultaneously and the result will
be a scattering spectrum which gives information on the density of states of these vibrational
modes (figure 18(b)).

3.3.1. Polycrystalline H2O ice, Ih. Polycrystalline H2O ice Ih was investigated using inelastic
scattering of x-rays by Ruocco et al (1996) and Sette et al (1996).

Data taken at −10◦C with an energy resolution of 3.2 meV are shown in figure 19 together
with fit curves at different momentum transfers.

The well defined peaks indicating the presence of only a few grains in the sample are
interpreted as gain and loss signals of longitudinal and transverse modes. The derived disp-
ersion curves are shown in the inset of figure 19.

The longitudinal mode is visible at all momentum transfers, whereas the transverse mode
is visible only beyond a momentum transfer of 7 nm−1. This coincides with about the smallest
size of the reduced Brillouin zone in ice. However, one has to be careful that the energy
resolution might not be sufficient to resolve details below this value.

3.3.2. Acoustic phonon dispersion in CdTe at 7.5 GPa. Hydrostatic pressure is an increasingly
important parameter in the study of matter since it allows one to correlate macroscopic
thermodynamic parameters with interparticle properties and to derive the equation of state.
Aside from structural questions, there is also the aim of gaining knowledge of the behaviour of
interatomic force constants. Such information is obtained by the study of the dynamics under
pressure. However, inelastic neutron scattering experiments require large sample volumes
which limits them to pressures of about 10 GPa for single crystals and about 30 GPa for
powder samples (Besson et al 1992). In contrast to this, the small size of an x-ray beam allows
working with small samples of µm dimensions enclosed in diamond anvil cells.

Since the development of the inelastic x-ray method, attempts have been made to study
the dynamics under pressure. Because of the large focus size at the HASYLAB instrument, a
modified Paris–Edinburgh pressure cell (Besson et al 1992), normally used for large sample
volumes in neutron scattering experiments, was used. The longitudinal phonons in single-
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Figure 19. Inelastic x-ray scattering data of poly-
crystalline H2O ice Ih at −10 ◦C at different
momentum transfers together with fit curves. The
inset shows the derived mode dispersion curves, taken
from Sette et al (1996).

crystalline Si embedded in LiF were resolved at a pressure of 4 GPa by Schwoerer-Böhning
(1995) and Burkel et al (1995).

Recently, the diamond anvil cell technology was applied by Krisch et al (1997) in the study
of the dynamics in polycrystalline CdTe in its sodium chloride phase (Nelmes et al 1995) at a
pressure of 7.5 GPa at room temperature. The size of the photon beam was 100 × 100 µm2

and the energy width was 5 meV. The longitudinal acoustic branch could be observed up to
10 nm−1, just beyond the first Brillouin zone. The dispersion curve obtained is shown in
figure 20 together with results from inelastic neutron scattering for the zinc-blende phase of
CdTe at ambient pressure for the crystallographic [111], [100] and [110] directions. There is
a strong increase of the excitation energies in the high-pressure phase compared to the one at
ambient pressure. The velocity of sound determined by a fit to the data using a sine function
increased from 3200 m s−1 to 5100 m s−1. Furthermore, the Grüneisen parameter could be
derived.

These results clearly demonstrate the capabilities of inelastic x-ray scattering experiments
in the field of high-pressure research.

4. Concluding remarks

These few examples clearly demonstrate the capability of high-energy-resolution spectroscopy
with synchrotron radiation of determining the dispersion of vibrational modes in crystalline
solids. Certainly, this technique is well suited for studying such excitations also in materials
lacking any translational lattice symmetry like amorphous, glassy or liquid materials, as
demonstrated in other contributions in this Special Issue.
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Figure 20. The phonon dispersion curves of CdTe at 7.5 GPa (•: x-ray data, Krisch et al 1997)
and at ambient pressure (�: along [111]; ◦: along [100]; and �: along [110], Rowe et al 1974).
The solid lines represent a fit and the dotted line indicates the derived velocities of sound. From
Krisch et al (1997).
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